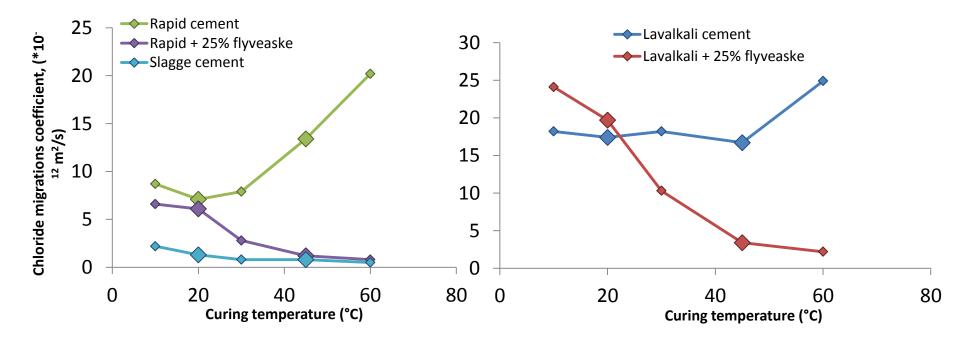


Microstructural Appearance of Cement Paste as a Function of Curing Temperature and Maturity Age

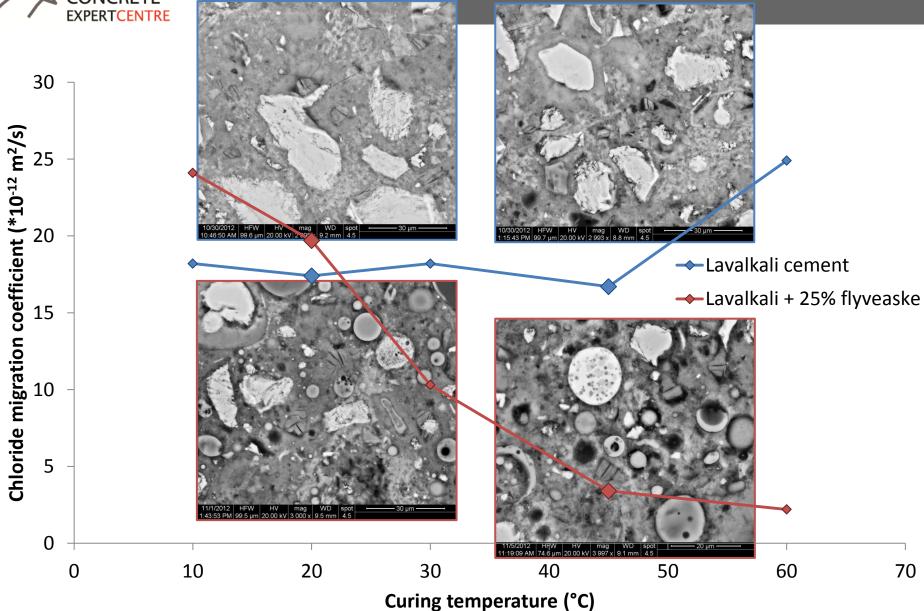

Ulla Hjorth Jakobsen, Martin Kaasgaard & Claus Pade Danish Technological Institute

Background & Aim

Laboratory testing related to project "Egenskabsudvikling" showed the following results:

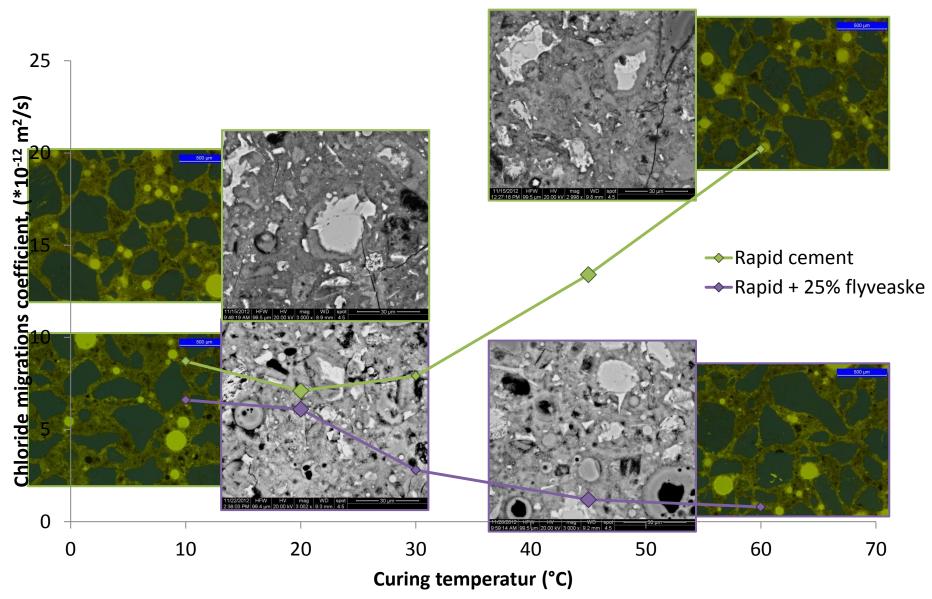
At the same maturity the chloride migration coefficient is lower the higher the temperature, for fly ash concrete; for non-fly ash concrete the chloride migration coefficient is higher.

Aim: Can the microstructure explain the test results? Is there any difference in connectivity of the pores?

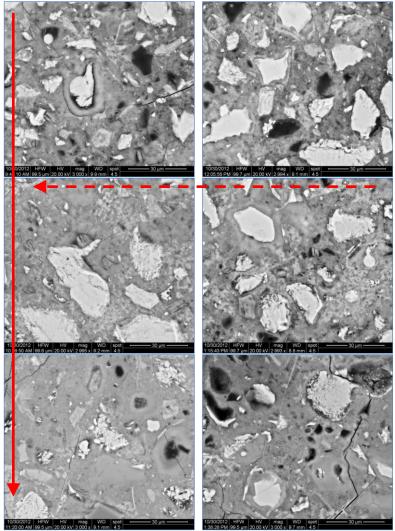

Eksperimental program

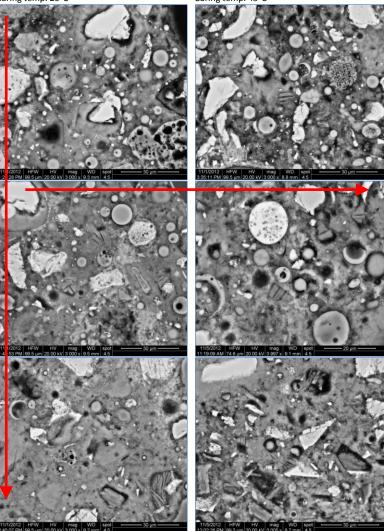
	V/C: 0,40	10°C	20°C	30°C	45°C	60/90°C
CEM I 52,5	Dmax:	Strength: 1, 2, 7,	Strength: 1, 2, 7,	Strength: 1, 2, 7,	Strength: 1, 2, 7,	Strength: 1, 2, 7, 28,
CEM I 42,5 SR	22 mm	28, 56 days	28, 56 days	28, 56 days	28, 56 days	56 days Chloride
CEM I 52,5 + 25% FA	Air: 3,5-5,5 %	Chloride migration	Chloride migration	Chloride migration	Chloride migration	migration 28, 56, 90,
CEM I 42,5 SR + 25% FA	5,5 5,5 70	28, 56, 90, 180	28, 56, 90, 180	28, 56, 90, 180	28, 56, 90, 180	180 Chloride
CEM III	Slump: 120-180 mm	Chloride diffusion 28, 180	Chloride diffusion 28, 180	Chloride diffusion 28, 180	Chloride diffusion 28, 180	diffusion 28, 180

Petrographic analysis (each):CEM I 42.5 SR +/- FA, CEM III:6 polished samples (20°C & 45°C; maturity 7, 28 & 90 days)CEM I 52.5 +/- FA:15 thin sections & 15 polished samples (10, 20, 30, 45 & 60°C; maturity 7, 28, & 90 days)



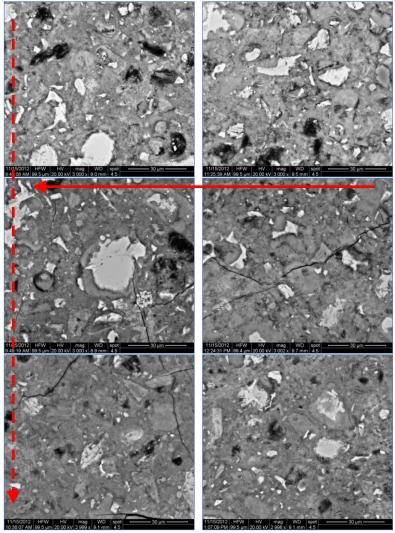
Chloride migration vs. curing temperature, 28 days

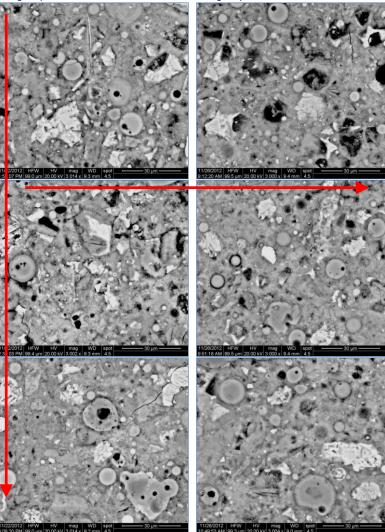

Chloride migration vs. curing temperature, 28 days


Microstructural Appearance

Sample A; CEM I 42,5 SR. Maturity increases from top 7days to 28 and 90 days Curing temp: 20°C Curing temp: 45°C

Red arrows indicate decrease in chloride migration coefficient


Sample B; CEM I 42,5 SR + FA. Maturity increases from top 7days to 28 and 90 days Curing temp: 20°C Curing temp: 45°C


Microstructural Apperance

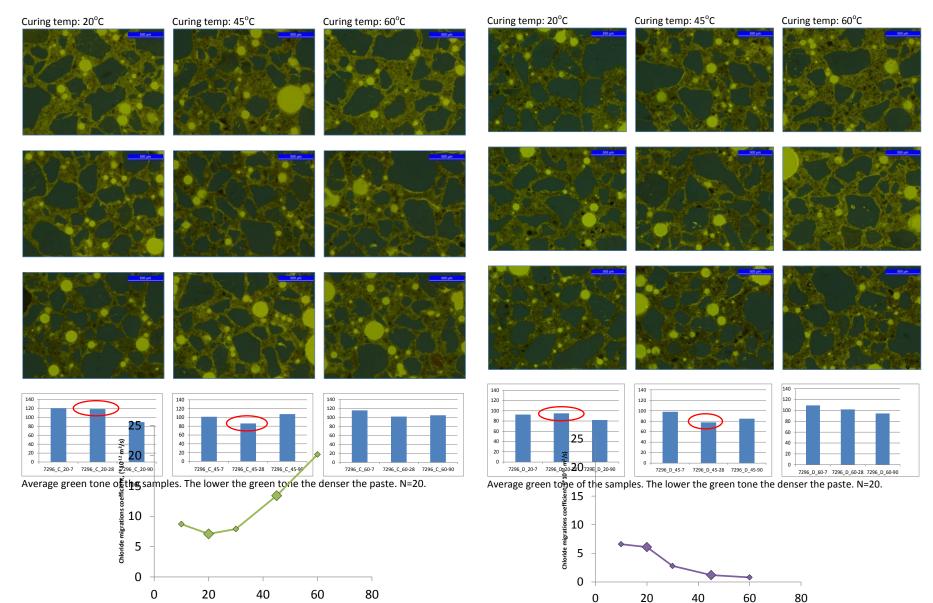
Sample C; CEM I 52,5. Maturity increases from top 7days to 28 and 90 days Curing temp: 20°C Curing temp: 45°C

Red arrows indicate decrease in chloride migration coefficient;

Sample D; CEM I 52,5 SR + FA. Maturity increases from top 7days to 28 and 90 days Curing temp: 20°C Curing temp: 45°C

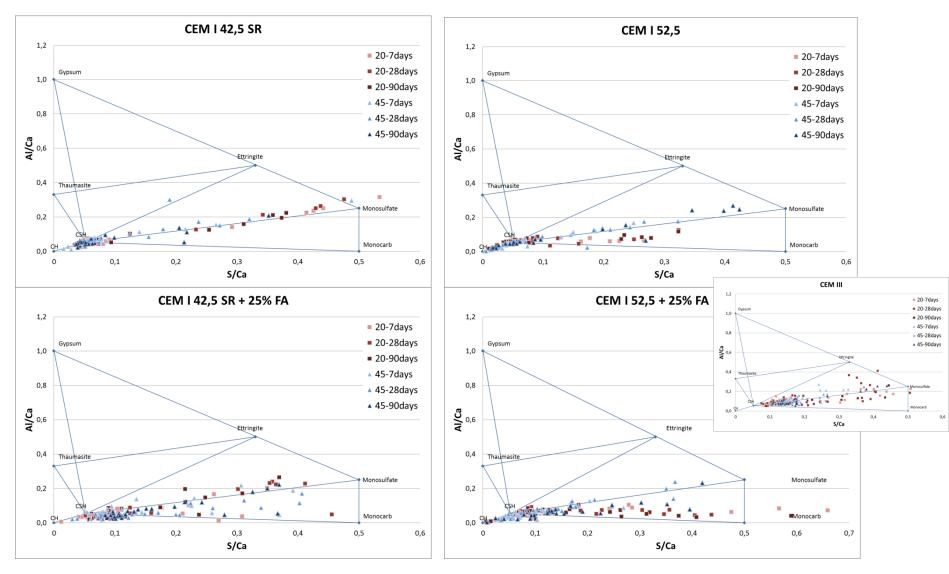
Microstructural Apperance

				Hydrates			Micro	Adhesion
Cement Type			Hadley holes	filling Hadley	Homogeneity	FA	cracks in	between
	Temp	Age	Empty	holes	of paste	hydration	paste	IH & OH
A CEM I 42.5 SR	20	7	Many	Few	Inh.			
	20	28	Some	Few	Rel. Hom			
	20	90	Few	Few	Hom.			
A CEM I 42.5 SR	45	7	Many	Few	Inh.			
	45	28	Many	Some	Inh.			
	45	90	Many	Few	Hom.			
B CEM I 42.5 SR +FA	20	7	Some	Few	Inh.	No		
	20	28	Some	Some	Inh.	Yes		
	20	90	Few	Many	Hom.	Yes		
B CEM I 42.5 SR +FA	45	7	Many	Some	Inh.	No		
	45	28	Some	Many	Rel. Hom	Yes		
	45	90	Few	Many	Rel. Hom	Yes		
C CEM I 52.5	20	7	Some	Few	Inh.		Yes	
	20	28	Many	Few	Rel. Hom		Yes	
	20	90	Some	Some	Hom.		Yes	
C CEM I 52.5	45	7	Many	Few	Hom.		Yes	Poor
	45	28	Many	Some	Rel. Hom		Yes	Poor
	45	90	Many	Some	Hom.		Yes	Poor
D CEM I 52.5 +FA	20	7	Many	Few	Inh.	No		
	20	28	Many	Few	Hom.	No	Yes	
	20	90	Some	Some	Hom.	No	Yes	
D CEM I 52.5 +FA	45	7	Many	Some	Rel. Hom	Yes	Yes	
	45	28	Some	Some	Rel. Hom	Yes	Yes	
	45	90	Few	Some	Hom.	Yes	Yes	


Capillary Porosity

Sample C; CEM I 52,5. Maturity increases from top 7days to 28 and 90 days

Curing temperature (°C)


Sample D; CEM I 52,5 SR + FA. Maturity increases from top 7days to 28 and 90 days

Curing temperature (°C)

Phase Compositon

Ettringite: Ca₃Al(OH)₆.12H₂O.(SO₄)₃.2H₂O, monosulfate: Ca₂Al(OH)₆.SO₃; monocarboaluminate: 3CaO.(Al,Fe)₂O₃.CaCO₃.11-12H₂O

- The petrographic analysis using fluorescence impregnated thin sections and polished section did not explain the test results regarding chloride migration
- Generally the fluorescence analysis showed that the paste porosity of the samples are very similar
- The SEM-EDX analysis showed some difference in the amount of: Hadley holes Infilling of Hadley holes Homogeneity of the paste Degree of fly ash hydration Micro-cracks in paste Adhesion between IH & OH
- The phase assemblage differs between cement type and curing temperature