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Objective and motivation

Objective

> Present the status of the work within, A Coupled Transport and Chemical
Model for Durability Predictions of Cement Based Materials

> Present input/output parameters for reactive mass transport modeling in
cement based materials

Motivation

> Improve the understanding of concrete degradation, from advanced
reactive mass transport modeling

» Specify the contribution from reactive mass transport modeling to the
service life prediction framework

Full project title: A Coupled Transport and Chemical Model for Durability
Predictions of Cement Based Materials
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Outline

Model description
2.1 General formulation of a reactive mass transport model
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Model overview

Reactive mass transport model in a service life prediction

Overview of the physical and chemical processes described in the coupled
model

[ Mass Transport j [Chemical EquiIibriumj

Processes included in the mass Processes included in the
transport model: chemical equilibrium module:
- Diffusion of ions - Water reactions

- Eletromigration - Pure phases

- Moisture transport - Solid solution

- Sorption hysteresis - Surface complexation

- Diffusion of gasses

( Coupled model j

PDE system solved with FEM
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Model overview

Chemical equilibrium description in service life prediction

Different time aspects in chemical modeling
> Assumed time for hydration
> The time for the operating structure

» Changing boundary conditions initiated at different times

I I Chemical description
f t ';' 1 ) of solid matrix and
hydration service pore solution
I >
t ) total
exposure
Chemical description
t of the boundary
exposure condition
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Outline

Model description

2.2 Mass transport and finite element parameters
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Material model description

Parameters for the coupled system

Material parameters for mass transport calculation
> Tortuosity factor for porous material
Spatial and transient parameters for the finite element method
> Length of the system considered
> Spatial discritization
> Total time

> Time stepping length
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Outline

Model description

2.3 Chemical modeling of hydration and initial parameters
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Material model description

Initial chemical values

Oxide composition for Reverse Bouge calculation of cement based material:

Oxide[mass%] = [CaO; SiO,; AL,O;; Fe,0,; SO,; K,0; Na, O]

Additional oxides may be added, e.g. MgO
Degree of hydration of clinker:

ai(t) = [ac3s; ac,s; Ac,A; OC,F; AC,AF; UCS; AKS; aK3NS4]

Water to cement ratio:
w/C

Initial calculation determines, solid matrix composition, pore solution
composition, saturation of porous system, porosity.
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Outline

Model description

2.4 Chemical modeling of boundary
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Boundary model description

Chemical description of the boundary environment

For water exposed boundary condition

> lonic composition, e.g from Tronheim Fjord?!

Ca Mg Na K S Cl

g/l 043 133 1099 0.38 0.99 21.10

0.02

> Water temperature
For non-water exposed boundary or mixed, e.g splash zone
> Relative humidity, RH(t)
> Air temperature
> Direct tide variation measurements or averaged functions

1De Weerdt and Geiker 2012
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Outline

Model description

2.5 Model databases
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Physical property database

Physical properties for constituents

Database for physical constants of
the constituents and phases:

> lonic complexes

> Diffusion coefficients
> Electromigration coefficient
> Valence
» Solid Species
> Mole weight
> Density

» Water and vapor diffusion
coefficients

Fixed physical constants:

>

>

>

>

>

Dielectricity for water
Dielectricity in wacuum
Farradays constant
Density of water

Vapour saturation density
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Predefined chemical database models

State of the art

Chemical degradation of the solid matrix

Reactions

Pure phases

Portlandite Ca(OH), + 2H* — Ca®* +2H,0
silica(am) $i0, +2H,0 — H,SI0,
Magnesite MCO, + H+ e Mg+ HCO;

Brucite Mg(OH), +2H* — Mg?* +n 0
OH-Hydrotalcite  Mg,AL(OH),, : 3H,0 —
4Mg2* +2A1(OH); +60H™ +3H,0

Reactions
Solid Solution
AFM(1) (ss)
C,AH, Ca,Al,(OH),, :3H,0 — 2Ca*" +2AI(OH); +20H +3H,0
C,FH, Ca,Fe,(OH),, : 3H,0 < 2Ca** + 2Fe(OH), +20H" +3H,0
AFM(2) (ss)
C,AH,, Ca,AL(OH),, :6H,0— 4Ca®" +2AI(OH), +60H™ +6H,0
C,FH,, Ca,Fe,(OH),, : 61,0 4Ca’* +2Fe(OH), +60H" +6H,0

AFm(3) (ss)

(Ca0), AL 0,80, : 8H,0 «—2Ca®* + 2Al(OH); +H,Si0; + OH™ +2H,0
Ca0),Fe, 0,80, : 8H,0 «— 2Ca** + 2Fe(OH); + H,Si0; + OH™ +2H,0
. Fe; 05510, : 8Hy al , +H,Si0; a

AFm(4) (s5)

C,ASH,, (Ca0),AL,0,(Cas0,) : 12H,0 — 4Ca®" + 2A1(OH); + S0} +40H +6H,0

C,FSH,, (Ca0),Fe,0,(Cas0,) : 12H,0 — 4Ca*" +2Fe(OH), +50;~ +40H™ +6H,0
Hydrogarnets (ss)

C,AH, (Ca0),AL,0, : 6H,0 —3Ca’" +2AI(OH), +40H"

C,FH, (Ca0).Fe,0, - 6H,0 « 3Ca%* + 2Fe(OH); + 401

CO,- Mg,AL(OH),,CO, : 2H,0
Hydrotalcite 4Mg* -+ 2A1(OH); +COZ™ +40H" +2H,0
Syngenite K,Ca(S0,),H,0 — Ca** +2K* +280%" + H,0
Gypsum Cas0, : 2H,0 — Ca*" + 80} +2H,0
Calcite €aCo, «—CO%™ +Ca**
Anhydrite Cal su4 — ca?t +50]
Thaumasite (CaSiO,),(Caso), )l(cm'o,) (H,0),,—
6 a1’+sz Si0; +2C0% +280] +20H™ +26H,0
C,ACH,, (Ca0),Fe,0,(CaC0,)  11H,0
4Ca** +2Fe(OH), +COZ +40H™ +5H,0
C,FCH,, (Ca0),A1,0,(CaCO,) uuzo.—»
4Ca®" +2AI(OH); +COX +40H™ +5H,0
CaAl,(OH), GHZOHCuZ +2A1(OH); +6H,0
Ax(oH (am)  AI(OH), +OH" — Al(OH);
Gibsite AI(OH); +3H+ — A" +3H,0
Fe(OH), (am) l'c(OH) (am) +3H* — Fe’* +3H,0
Fe(OH), (cr) OH), (cr) + 3H* — Fe** +3H,0
Solid Solution
CSH(ss)
TobH (Ca0), 14 (S10,)(H,0), , + L32H —
0.66Ca”" + H,Si0, +0.16H,0
TobD (Ca0)y45(Si0,)y 5 (H,0), g5 + LEGH —
0.83Ca”" +0.66H,S10, +1.34H,0
JenH rao)m(im )(H,0), 5 + 2661+
33Ca’" + H,810, + 1.49H,0
JenD (c:m)l (50; Doga(11:0)5 -+ 3000+ e

066Ca’" +H,Si0, +0.16H,0

osH,

C,AFosH),

AFm(S) (ss)

(Ca0),ALO,(Ca(OH), ), 4(CaC0,), ; : 11L.5H,0 «— 4Ca>* + 2A(OH); +0.5C03~
+50H" +55H,0
(Ca0),Fe,0,(Ca(OH), ), 5(CaC0,), ; : 11.5H,0 — 4Ca** +2Fe(OH); +0.5C0;~

+50H" +5.5H,0
AF(1) (s5)
A-Etringite CagAl,(S0,),(OH),, : 26H,0 — 6Ca** +2A1(OH); +350%~ +40H™ +26H,0
Fe-Ettringite CagFe,(SO,),(OH),, : 26,0 — 6Ca** + 2Fe(OH); 43507 +40H™ +26H,0
AF(1) (s5)
Al-Ettringite Caghl,(S0,);(OH),, : 26H,0 6 Ca** +2AI(OH); +3S0] +40H™ +26H,0

Tricarboaluminate CagAl,(CO,);(OH),, : 26H,0 — 6Ca" + 2A(OH), +3C05 +40H +26H,0 ¢

Lothenbach, CemData07
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Predefined chemical database models

State of the art

Chloride binding models

Reactions

Pure phases:

Kuzel's salt Ca,AL(SO,),sCI(OH),, : 6H,0 «— 4Ca*" + 2AI(OH), +40H" +0.550,2~ + 6H,0
Solid solution:
C,AH,; + Friedel's salt (ss)
Friedel'ssalt  Ca,AlLCL,(OH),, : 4H,0 < 4Ca®" -+ 2Al(OH), +40H™ + 2Cl™ -+ 4H,0
C,AH,, Ca,AL (OH),, : 6H,0 < 4 Ca*" + 2AI(OH), +60H™ +6H,0
C,ACH,, + Friedel's salt (ss)
Friedel's salt  Ca,AL,ClL,(OH),, : 4H,0 < 4Ca*" 4 2Al(OH), + 40H™ + 2CI™ + 4H,0
C,ACH,, (Ca0),Al,0,4(CaCO,) : 11H,0 — 4 Ca*" + 2AI(OH), + CO3~ +40H™ +5H,0

Lothenbach + Balonis
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Predefined chemical database models

State of the art

Input for surface reaction sites

Reactions
Pure phases
C-S-H Ca,Si,0,(0OH), + H* + H,0 — 6Ca*" +2H,SiO,
Surface Silanol sites
reactions
SurfChar_1 =SiOH «— =Si0~ + Ht
SurfChar_2 =SiOH + Ca®" — =Si0Cat + H*
SurfBrid_1 =SiOH + =SiOH + Ca’?* « =Si0Ca0Si=+ 2H+
SurfBrid_2 =SiOH + Ca®t 4 H,0 < =Si0CaOH=+2H+
SurfBrid_3 =SiOH + =SiOH + H,Si0, «—— =Si0Si(OH) ,0Si=+ 2H,0

Nonat + Hosokawa

Electrical double layer, thickness of double layer.
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Model output and links

Output values from model and links to other projects

Model output: Links to present projects

> Pore solution > Any porous media diffusion
> lonic concentration model
> PH > Physical and chemical input
> lonic strength for this type of model

» Solid phase composition » Corrosion model

> Porosity > Initiation modeling

» Water/vapor saturation > Corrosion cell modeling

Links to future projects
» Atomistic modeling

» Crack modeling
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Simulation results

Reactive mass transport model in a service life prediction

Example of model output, showing phase changes with pure water boundary
conditions

I Portlandite
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[ JenniteD

[ TobermoriteD
[ TobermoriteH
I C AH,
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Conclusion

Conclusion of the midterm status of the project
> State of the art modules within, for the coupled model:

> Continuum mechanical transport theories
> Chemical equilibrium modeling

> Reactive transport modeling is applicable in the framework of service life
prediction
> Theoretical and numerical implementation
> Open and general format,

> Use at different purposes and cross disciplinary, e.g. within research topics or

consulting
> easy to adapt future findings within, material constants, chemical reactions,

etc.
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